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ABSTRACT  
The interaction between the tire and terrain has long been of interest for vehicle dynamic simulation.  Detailed tire 
models produce accurate results, but are too computationally intensive for the iterative vehicle design process.  The 
objective of this work is to develop a computationally efficient way to estimate the tire’s deformed shape, from 
which the tire forces can be evaluated. A novel, planar, quasi-static, constraint mode tire model is developed to 
address this objective.  The required model parameters are reduced to two non-dimensional shape parameters and an 
overall stiffness factor.  An admissible domain of the shape parameters is developed based on the deformation 
limitations of a physical tire.  Specifically, no single harmonic may dominates the tire shape and the low spatial 
frequency components must contribute more than higher frequency components to the overall tire shape.  The ability 
of the model to accurately predict the spindle force is evaluated by comparing simulation and experimental 
responses for quasi-static flat plate and cleat tests.  This work provides a simple, accurate tire model for 
circumferential displacement and vertical spindle force prediction to improve the vehicle design process.   

Keywords: Terrain Surface, Planar Tire Model, Constraint Mode 

NOMENCLATURE 
N Total number of tire segments 

𝑢 Radial deflection. 

𝑅  Tire radius. 

Fn Radial force acting on nth tire segment. 

F Vertical spindle force. 

f Linearly distributed load density. 

𝜅  Radial stiffness density. 

𝑈𝑏 Bending potential energy for each tire segment. 

𝑀  Bending moment for each tire segment. 

𝐸 Elastic modulus. 

𝐼  Second moment of inertia for each tire segment. 

𝑈𝑠 Shear potential energy for each tire segment. 

𝐺  Shear modulus. 

A Cross-sectional area. 

𝑈𝑒  Elastic potential energy for each tire segment. 
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𝑈𝑤 External work on each tire segment. 

𝛾1 Distributed physical bending stiffness. 

𝛾2 Distributed physical shear stiffness. 

𝛾3 Distributed physical radial stiffness. 

𝑘0 Overall model stiffness. 

𝛼1,𝛼2  Model shape parameters. 

INTRODUCTION 
With the advent of autonomous vehicles and the simultaneous pressure to improve energy efficiency, there are ever 
increasing demands on vehicle engineers.  Clearly there are more electronic and mechatronic systems, more sensors 
and more actuators.  Batteries increase vehicle weight at the same time that the incentive to improve fuel economy 
continues to grow, which in turn drives a reduction in the overall vehicle weight.  These new technologies are 
making vast improvements in vehicle performance and the way drivers think of their vehicles.  They also introduce 
new challenges to vehicle engineers. 

The chassis engineer is faced with numerous design challenges (weight, cost, ride, handling, noise, reliability, 
packaging…) while interacting with several influential groups (scientific labs, proving ground, suppliers, safety, 
manufacturing, powertrain and body groups) that result in a highly iterative design process.  All these challenges and 
groups must be satisfied, to the best of the engineer’s ability, within a very short timeframe.  Within this cacophony 
of ever-changing requirements and influential groups, some fundamental physical truths remain.  Regardless of how 
the power is developed, or how the wheels are steered, all the vehicle forces must ultimately be reacted through the 
vehicle suspension and tires.  The focus of this work is the interaction between the tires and the main excitation to 
the vehicle: the terrain [1]. 

This work addresses the means by which non-deformable terrain imposes a unilateral geometric boundary constraint 
on rolling tires to which the chassis responds by generating loads, moments, motions, deformations, etc.  The terrain 
surface remains a consistent excitation to the vehicle throughout the iterative design process.  Understanding and 
properly modeling this interaction is critical in predicting the loads and the resulting vehicle performance.  However, 
actual loads are only available at the conclusion of the design and development process when it is difficult and 
expensive to make modifications. 

Clearly, computationally efficient and accurate vehicle dynamic simulations are critical throughout this iterative 
process.  High fidelity, but computationally intensive models that provide very accurate information after the parts 
have been released are of no use.  Simulation results arising from overly simplified models that cannot be trusted 
and have little value.  This work aims to strike a balance between heuristic tire models (such as a linear point-
follower) that lack the fidelity to make accurate chassis load predictions and computationally intensive models that 
cannot provide timely predictions. 

The objective of this work is to develop a computationally efficient, planar tire model that accurately predicts the 
lower-frequency, but not necessarily low amplitude, tire shape.  The emphasis is intentionally placed on the shape of 
the deformed tire, which must be capable of representing the bridging property (over narrow cracks in the pavement) 
and enveloping property (over sharp bumps).  This scope includes relatively large deformations, approaching, but 
not including, the point of rim strike (when the tire sidewall is folded such that the upper portion is in direct contact 
with the lower portion and there is a discontinuous and dramatic increase in apparent stiffness).  A simple linear 
relationship between the tire circumferential deformation and the spindle load prediction is used to develop the 
deformed tire shape with the understanding that more complex force-deflection relationships could be developed 
using this deformed shape as an initial approximation.     

Higher-frequency dynamics such as those that would be required for noise predictions are outside the scope of this 
work.  The focus is the deformed shape of the tire in the region of the contact patch.  The majority of the tire is non-
contacting and must adopt a smooth shape.  That is, the tire model parameterization must be such that the deformed 
tire shape does not exhibit higher frequency dynamics that are typically associated with higher free-vibration normal 
modes.  Defining the parameter constraints such that these higher order dynamics are omitted is one of the major 
contributions of this work.  This results in the development of an admissible region for the tire shape parameters.     
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Developing a parsimonious parameter set is one of the major contributions of this work.  The tire model developed 
in this work is completely parameterized by three parameters: a single stiffness parameter and two shape parameters.  
Experimental data is used to validate the approach using two quasi-static tests, a flat plate and a cleat test, with 
relatively large deformations.  The model is capable of bridging or enveloping small irregularities in the terrain 
surface and generating the correct tire shape over irregular terrain. 

The remainder of this work is developed as follows.  Some background on planar tire modeling and the use of 
constraint modes is briefly reviewed.  The mathematical derivation of the constraint mode model is developed such 
that the entire model can be described by just three parameters.  The constraints on the tire shape parameters are 
developed based on the required physical properties of a tire and the requirement that the shape of the non-
contacting region of the tire must be smooth.  Finally, the parameterization process for a specific tire is developed 
and validated with quasi-static experimental results.  

BACKGROUND 
A considerable amount of tire modeling research has been conducted and a comprehensive review of the current 
state of the art is presented by Umsrithong [2].  Although a complete review of recent developments is not presented 
herein, the results from several of these works have direct relevance to the objectives of this study.  For example, 
Badalamenti et al. showed that a radial spring tire model, in which the radial spring element deflection depends on 
the adjacent element deflections, could accurately describe the tire enveloping behavior in an efficient model [3].  
Presently, a planar ring model with an elastic foundation that emphasizes the circumferential deformation is 
developed to accurately and efficiently describe the tire enveloping behavior. 

The deformed shape of the tire (including bridging and enveloping) was accurately predicted by Zegelaar and 
Pacejka by using a flexible ring to simulate the quasi-static response of a tire rolling over an uneven surface [4].  
Although the simulation results agreed with the experimental data, the complexity of the model requires additional 
computational requirements.  The objective to verify the parameter identification process via the deformed shape of 
the tire is accomplished using experimental, single point-load testing.  This single point excitation to the tire model 
is also used analyze the frequency content of the deformed shape of the tire.  Presently, single point-load 
experimental results are used to parameterize the constraint mode tire model developed in this work.  A similar 
approach was developed by Loo, who modeled the tire by using a more complex flexible circular ring under tension 
with a nest of linear springs and dampers arranged radially and experimentally identified the parameters using single 
point-load tests [5].  However in Loo’s study the ring tension and foundation stiffness requires contact patch 
measurements. 

It is assumed in this work that the low-frequency deformation of the tire shape can be adequately defined by the 
quasi-static constraint modes.  This assumption is given some credence by Gillespie’s study in which a radial spring 
model is used to simulate the stiffness variation circumferentially and the magnitude of the radial force variation is 
found to be relatively independent of speed [6].  It is further assumed in this work that the transient response can be 
adequately represented with a mass-spring tire model.  Takayama et al. develops such a model to predict the 
transient response of a tire encountering a cleat, where the belt and tread region is modeled by a rigid ring and 
deflections from the cleat are absorbed by a linear and planar spring attached to the rigid ring [7]. 

Ferris demonstrates that a static constraint mode tire model can be used to capture the tire enveloping and bridging 
properties with an axisymmetric and circumferentially isotropic model [8].  It is modeled as an inextensible, but 
flexible, ring supported by an elastic foundation represented by the radial stiffness, κ, as shown in Figure 1a.  The 
tire is divided into N segments and each segment is considered an Euler elastic beam of length 2πR/N and cross-
sectional area, A, shown as a shaded region in Figure 1b.  The radial deflection vector {u} is used to describe the 
circumferential tire displacement of each tire segment.  The quasi-static constraint modes are developed from 
Equation (1). 



UNCLASSIFIED 

 
Figure 1. Schematic plot of constraint tire model and a piece of tire segment 

 

 [𝑲]{𝒖} = {𝑭} (1) 

The physical degrees of freedom are categorized into active and omitted sets, represented by superscripts ‘a’ and ‘o’ 
respectively.   In general, the boundary degrees of freedom must be a subset of the active degrees of freedom.  In the 
tire modeling case, the active degrees of freedom must include those in contact with the terrain.  Therefore the mass 
and stiffness matrices can be reordered and partitioned as given in equation (2).  

 �
[𝑲𝒂𝒂] [𝑲𝒂𝒐]
[𝑲𝒐𝒂] [𝑲𝒐𝒐]� �

{𝒖𝒂}
{𝒖𝒐}� = �{𝑭

𝒂}
{𝟎}

�   (2) 

An iterative process to identify the active constraints at the tire-terrain interface is formulated, as shown by Figure 2, 
beginning with the undeformed tire shape shown in Figure 2(a).  The segment with the largest interference is 
considered the first active constraint, {𝒖𝒂} shown as a single small circle in Figure 2(b).  The omitted constraint 
vector {𝒖𝒐} can be obtained as Equation 3 through Guyan mode reduction [9].   

 {𝒖𝒐}  = −[𝑲𝒐𝒐]−1[𝑲𝒐𝒂]{𝒖𝒂} (3) 

The resulting circumferential deformation with the first active constraint is predicted, as shown in Figure 2(b) where 
the active constraint is indicated by a small circle.  The segment with the most interference in Figure 2(b) is selected 
as the second active constraint and a new tire shape is computed as shown in Figure 2(c).  This process proceeds 
until there is negligible interference, as shown by Figure 2(f).   

 
Figure 2. The iterative process to identify the active constraints 

The objective of this work is to properly define this stiffness matrix [K]. The stiffness matrix is defined with a few 
parameters (i.e., one stiffness and two shape parameters) and gives reasonable shape predictions for relatively large 
deflections.  Perhaps most importantly, the resulting model yields shapes that are intuitive; the tire shape follows the 
contour of the terrain along the contact area and is smooth in the non-contacting region of the tire.   

MODEL DEVELOPMENT 
The quasi-static equation resulting from the application of Hamilton’s principle for one tire segment is written as 
Equation (4). 

 
� (𝛿𝑈𝑏 − 𝛿𝑈𝑒 − 𝛿𝑈𝑠 + 𝛿𝑈𝑤)𝑑𝑡
𝑡2

𝑡1
= 0               ∀𝑡1, 𝑡2 

(4) 
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The virtual changes are computed as Equations (4) - (8). 

 
𝛿𝑈𝑏 =

2𝜋𝑅
𝑁

𝐸𝐼
𝜕4𝑢
𝜕𝑥4

𝛿𝑢 
(5) 

 
𝛿𝑈𝑒 =

2𝜋𝑅
𝑁

𝜅𝑢𝛿𝑢 
(6) 

 
𝛿𝑈𝑠 =

2𝜋𝑅
𝑁

𝐺𝐴
𝜕2𝑢
𝜕𝑥2

𝛿𝑢 
(7) 

 
𝛿𝑈𝑤 =

2𝜋𝑅
𝑁

𝑓𝛿𝑢 
(8) 

The equation of motion for each segment is then simplified to Equation (9).  

 
𝐸𝐼
𝜕4𝑢
𝜕𝑥4

+ 𝜅𝑢 + 𝐺𝐴
𝜕2𝑢
𝜕𝑥2

= 𝑓 
(9) 

For simplicity, the following parameters are defined in Table 1. The tire stiffness parameters (𝛾1, 𝛾2and 𝛾3) are  
invariant for a specific tire; the stiffness associated with a particular tire segment is a function of the number of tire 
segments, N.  It should be clear that each of the three physical stiffness parameters must be positive.  

Table 1. Physical stiffness parameters as a function of physical properties 

𝛾1 = 𝐸𝐼(2𝜋𝑅)−3    Segment bending stiffness 

𝛾2 = 𝐺𝐴(2𝜋𝑅)−1 Segment shear stiffness 

𝛾3 = 𝜅(2𝜋𝑅) Segment radial stiffness 

  𝐹𝑛 =
𝑓
𝑁

(2𝜋𝑅) 
Radial force on nth tire segment 

The fourth spatial derivative of 𝑢 for the nth tire segment is approximated by adjacent points via a finite difference 
method as given in Equation (10).  

 𝑢𝑛′′′′ ≃
𝑢𝑛−2 − 4𝑢𝑛−1 + 6𝑢𝑛 − 4𝑢𝑛+1 + 𝑢𝑛+2

�2𝜋𝑅
𝑁 �

4  
(10) 

The equation of motion for the nth tire segment is expressed as Equation (11), 

 𝑘0𝛼2𝑢𝑛−2 + 𝑘0𝛼1𝑢𝑛−1 + 𝑘0𝑢𝑛 + 𝑘0𝛼1𝑢𝑛+1 + 𝑘0𝛼2𝑢𝑛+2 = 𝐹𝑛 (11) 

where the stiffness and shape parameters are defined in terms of the tire parameters as Equation (12) [10]. 

 𝑘0 = 6𝛾1𝑁3 − 2𝛾2𝑁 + 𝛾3𝑁−1, 

𝑘0𝛼1 = 𝛾2𝑁 − 4𝛾1𝑁3, 

𝑘0𝛼2 = 𝛾1𝑁3 

 

(12) 

 

The symmetry of a physical tire results in a circulant stiffness matrix [𝑲] that comprises two parts: 𝑘0 defines the 
overall stiffness and shape matrix [𝜶] defines the relative deformations (i.e., the shape) of the deformed tire [10], as 
shown in Equation (13). 

 

[𝑲] = 𝑘0

⎣
⎢
⎢
⎢
⎢
⎡

1 𝛼1 𝛼2 0 ⋯ 𝛼2 𝛼1
𝛼1 1 𝛼1 𝛼2 ⋯ 0 𝛼2
𝛼2 𝛼1 1 𝛼1 ⋮ 0 0
0 𝛼2 𝛼1 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛼1 𝛼2 0 0 ⋯ 𝛼1 1 ⎦

⎥
⎥
⎥
⎥
⎤

= 𝑘0[𝜶] = 𝑘0𝑐𝑖𝑟𝑐({𝑎𝑖}) 

(13) 
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In general, a circulant matrix is denoted by 𝑐𝑖𝑟𝑐 and characterized by the first row of the matrix, written as the 
characteristic row vector {𝑎𝑖}.  The shape matrix [α] has a circulant form that is only a function of two shape 
parameters (𝛼1 and 𝛼2) so that the characterization vector becomes 

 {𝑎𝑖} = � 𝑎0  𝑎1 𝑎2 … 𝑎𝑁
2−1� = [1 𝛼1 𝛼2 0 … 0] (14) 

ADMISSIBLE REGION FOR SHAPE PARAMETERS  
Clearly the physical tire stiffnesses must be positive and the constraints on the physical stiffnesses must be enforced 
on the model parameters.  It should also be intuitive that the non-contacting region of a tire under quasi-static 
conditions must adopt a smooth, unrippled shape.  That is, the upper section of the tire remains nearly round.  More 
specifically, changes in the radial deformation of the tire occur smoothly and in small increments in the 
circumferential direction.  This implies that the contributions of higher spatial frequencies must remain small.  This 
is in contrast to the deformed shape that a tire assumes when it is being harmonically excited, particularly in the free 
vibration mode.  The remainder of this section proceeds as follows.  First the physical restrictions on the tire’s 
stiffness parameters are used to develop a set of constraints on the shape parameters.  Next, a single point load is 
considered in order to develop the spatial frequency constraints.  The low-frequency spatial constraint is formulated 
and the resulting constraints on the shape parameters are developed.  This set of constraints forms the admissible 
region for the shape parameters. 

Physical Constraints 
The tire shape is constrained by its physical properties which must be enforced as constraints on the shape 
parameters 𝛼1 and 𝛼2.  An admissible region of the shape parameter set is derived from these constraints.  
Specifically, the tire must possess positive bending, shear and radial stiffness so that the tire stiffness parameters, 
𝛾1𝑁3, 𝛾2𝑁, and 𝛾3𝑁−1 (as shown in Table 1), must be positive.  The positive sense for the deflections and 
corresponding forces are defined such that the overall tire stiffness, k0 must also be positive.  Therefore, the 
relationships developed in Equation (12) are rearranged to develop constraints on the tire shape parameters, 𝛼1 and 
𝛼2, as given in Equation (15). 

 
𝛼2 =

𝛾1𝑁3

𝑘0
> 0 

𝛼1 + 4𝛼2 =
𝛾2𝑁
𝑘0

> 0 

2𝛼1 + 2𝛼2 + 1 =
𝛾3𝑁−1

𝑘0
> 0 

 

 

(15) 

 

Next an additional constraint that enforces the low spatial frequency requirement (smoothness for the non-contacting 
region of the tire) is formulated by considering the effects of a single point load. 

Quasi-Static Point Loading 
Consider a single point load on the tire such that only one degree of freedom is active.  Without loss of generality, 
the indices of the degrees of freedom are assigned such that this active point is the first degree of freedom.  The 
deformed tire shape is simply computed as Equation (16).  

 {𝒖} = �𝑢
𝑎

𝒖𝒐� = [𝑲]−𝟏 �𝐹
𝑎

∅ � = [𝛂]−𝟏 �𝑘0
−1𝐹𝑎
∅

� (16) 

 

Since there is only one active segment, 𝑢𝑎 and 𝑘0−1𝐹𝑎 are scalar values and the deformed shape of the tire, {𝒖} =
�𝑢

𝑎

𝒖𝒐�, is the product of the first column of the matrix [𝜶]−𝟏 and the scalar 𝑘0−1𝐹𝑎 .  To compute the inverse matrix, 
[𝜶]−𝟏, an eigen-decomposition method is applied to the original shape matrix [𝜶].  The eigenvalues of the shape 
matrix [𝜶] are written in vector form as {𝜆} and are calculated by applying the Discrete Fourier Transform to the 
vector {𝑎} as shown in Equation (17) [11]. 

 {𝜆} = ℱ({𝑎})  
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𝜆𝑘 = �𝑎𝑖𝑊𝑖𝑘
𝑁−1

𝑖=0

       𝑘 = 0,1,2, … ,𝑁 − 1 

𝑊 =  𝑒−
2𝜋
𝑁 𝑗 

(17) 

 

The eigenvector corresponding to the kth eigenvalue, 𝒗𝑘, is given in Equation (18). 

 𝒗𝑘 =
1
√𝑁

(𝑊0𝑘 𝑊1𝑘 𝑊2𝑘 ⋯ 𝑊(𝑁−1)𝑘)′     𝑘 = 0,1,2, … ,𝑁 − 1 
 

(18) 

 

The eigenvector matrix, [𝑽], is defined as the sequential concatenation of eigenvectors, provided in Equation (19) . 

 [𝑽]  = [𝒗0 𝒗1 𝒗2 ⋯ 𝒗(𝑁−1)] (19) 

The circulant matrix [𝜶] can be diagonalized by [𝑽]  as shown in Equation (20), where [𝑽]𝑯 is the Hermitian matrix 
of [𝑽]. 

  [𝜶] =  [𝑽]𝑯 𝑑𝑖𝑎𝑔(𝜆0 ⋯ 𝜆𝑁−1)[𝑽]  (20) 

The inverse of [𝜶] is developed as shown in Equation (21).   

 [𝜶]−1 = [𝑽]𝑯𝑑𝑖𝑎𝑔(
1
𝜆0

⋯
1

𝜆𝑁−1
)[𝑽] 

(21) 

The inverse matrix of [𝜶] is also a circulant matrix because it shares the eigenvectors of [𝜶] and the eigenvalue 
vector of [𝜶]−1 can be written as �1

𝜆
� .  Since the characterization vector {𝑎} is sparse, it is convenient to write the 

eigenvalues of [𝜶] as shown in Equation (22), where it can be seen that the eigenvalue vector {𝜆} is symmetric (i.e., 
 𝜆𝑘 = 𝜆𝑁−𝑘, for 𝑘 = 1,2, … ,𝑁 − 1).  

 
𝜆𝑘 = 1 + 2𝛼1𝑐𝑜𝑠 �

2𝜋𝑘
𝑁

� + 2𝛼2𝑐𝑜𝑠 �
4𝜋𝑘
𝑁

�      𝑘 = 0,1,2 …𝑁 − 1 
(22) 

The characteristic vector of the inverse matrix, i.e. the first row of [𝜶]−1, is denoted as {𝛽} .  It can be obtained by 
performing an Inverse Discrete Fourier Transform to the eigenvalue vector of  [𝜶]−1 .  The inverse matrix [𝜶]−1 also 
has a circulant form as shown by Equation (23), and is written as B for convenience. 

 [𝜶]−1 = 𝑩 = 𝐶𝑖𝑟𝑐({𝛽𝑖}) 

{𝛽} = [𝛽0,𝛽1,𝛽2, … ,𝛽𝑁−2,𝛽𝑁−1] = ℱ−1({𝜆𝑖−1}) 

𝛽𝑘 =
1
𝑁
�

1
𝜆𝑖
𝑊−𝑖𝑘

𝑁−1

𝑖=0

                         𝑘 = 0,1,2, … ,𝑁 − 1 

 

(23) 

The characteristic vector {𝛽} is symmetric (i.e., 𝛽𝑘 = 𝛽𝑛−𝑘, 𝑘 = 1,2, … ,𝑁 − 1) due to the symmetry of {𝜆}.  Given 
Equation (16) and the symmetric property of {𝛽}, the resultant deformed tire shape with one active segment is 
computed as Equation (24). 

 

{𝒖} =

⎣
⎢
⎢
⎢
⎢
⎡
𝛽0 𝛽1 𝛽2 𝛽3 ⋯ 𝛽𝑛−2 𝛽𝑛−1
𝛽𝑛−1 𝛽0 𝛽1 𝛽2 ⋯ 𝛽𝑛−3 𝛽𝑛−2
𝛽𝑛−2 𝛽𝑛−1 𝛽0 𝛽1 ⋮ 𝛽𝑛−4 𝛽𝑛−3
𝛽𝑛−3 𝛽𝑛−2 𝛽𝑛−1 𝛽0 ⋯ 𝛽𝑛−5 𝛽𝑛−4
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛽1 𝛽2 𝛽3 𝛽4 ⋯ 𝛽𝑛−1 𝛽0 ⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑓𝑎

𝑘0
0
⋮
0 ⎭
⎪
⎬

⎪
⎫

=
𝑓𝑎

𝑘0

⎩
⎪
⎨

⎪
⎧
𝛽0
𝛽1
𝛽2
𝛽3
⋮

𝛽𝑛−1⎭
⎪
⎬

⎪
⎫

=
𝑓𝑎

𝑘0
{𝛽} 

 

(24) 

To summarize, the deformed tire shape vector {𝒖} for a single active element is the vector {𝛽} scaled by 𝑘0
−1𝐹𝑎.  

The characteristic vector {𝛽} is obtained by calculating the Inverse Discrete Fourier Transformation of {𝜆𝑖−1}, which 
is determined by the shape coefficients  𝛼1 and 𝛼2, as shown in Equation (17). 
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Spatial Frequency Constraints 
There are two spatial frequency constraints placed on the tire shape.  The first is that there is no single harmonic that 
dominates the shape.  The second is that low order (low spatial frequency) components must contribute more than 
higher order components to the overall tire shape.  Each of these constraints is developed in turn.  First, it is clear 
from Equation (23) that if one of the eigenvalues of the shape matrix, say λm, approaches zero, then the 
characteristic vector {𝛽} would be dominated by the nearly infinite term 𝛽𝑚 and the remaining components would 
be negligible.  In this case, the deformed tire shape vector {𝒖} would be harmonic, resulting in an unrealistic 
deformed tire shape.  Figure 3 shows examples of undesirable tire shapes that are dominated by a single harmonic 
term; the solid line represents the undeformed tire shape and the dashed lines represent the deformed tire shape with 
a dominant harmonic term.  The first diagram, m = 0, shows the shape of a tire containing only a constant radial 
deformation (which violates the condition that perimeter is fixed – it is a steel band).  The second diagram shows the 
condition for m = 3 in which the bottom of the tire is flat, but the upper-right and upper-left sections of the tire are 
also deflected inward, which is unreasonable.  These shapes may correspond to components of free-vibration of a 
tire, but they fail to capture the deformed shape of a tire in quasi-static contact with the pavement.  Therefore, since 
no single harmonic can dominat the shape, none of the eigenvalues of the shape matrix can approach zero; this first 
spatial frequency constraint is written as Equation (25) . 

𝜆𝑖 ≠ 0,    ∀𝑖 ∈ {0,1,2 … 𝑛 − 1} (25) 

 
Figure 3. Solid line: Undeformed tire shape; Dashed line: deformed tire shape with dominant harmonic 

It can be shown from Equation (22) that 𝜆𝑖 can be rewritten as a function of a new variable 𝜉 as Equation (26).   

 𝜆𝑖(𝜉) = 4𝛼2𝜉2 + 2𝛼1𝜉 + 1 − 2𝛼2          𝑖 = 0,1,2 …𝑁 − 1   

𝜉 = 𝑐𝑜𝑠 �
2𝜋𝑘
𝑁

� , 𝜉 ∈ [−1,1] 

(26) 

 

Therefore, the constraint given in Equation (25) can be rewritten in terms of 𝜉 as Equation (27). 

 𝜆𝑖(𝜉) ≠ 0,∀𝜉 ∈ (−1,1) (27) 

 

Recall that the model is quasi-static and therefore the radial deformation vector should be dominated by a 
combination of low-order terms.  Again, the deformation should not be dominated by a single harmonic.  This low-
order dominance is developed in mathematical terms by considering Equation (24) and noting that low-order tire 
shapes occur when the vector {𝛽} is dominated by low-order terms.  Next consider Equation (23) and note that the 
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elements βk that compose the vector {𝛽} are determined by the relative weighting term, 1
𝜆𝑖

, of the function 𝑊−𝑖𝑘 =

 𝑒
2𝜋𝑖𝑘
𝑁 𝑗.  Therefore, the weighting term 1

𝜆𝑖
 should be relatively large (𝜆𝑖(𝜉) should be small) in the low frequency 

range (i.e., 𝑘 ≪ 𝑁/2).  This low frequency range corresponds to 𝜉 = 1 as given by Equation (26).  The weighting 
term should be relatively small (𝜆𝑖(𝜉) should be large) in the high frequency range (i.e., 𝑘 ≈ 𝑁/2) where 𝜉 = −1.  
This second spatial frequency condition, the low frequency domination constraint, is therefore expressed as the 
inequality given in Equation (28)Error! Reference source not found.. 

 𝜆𝑖(1) < 𝜆𝑖(−1) (28) 

 

Finally, note that the function 𝜆𝑖(𝜉) is a parabola.  Applying the constraint on 𝛼2 that was derived in Equation (15), 
the constraint on the second derivative of 𝜆𝑖(𝜉) is given in Equation (29). 

 𝑑2(𝜆𝑖(𝜉))
𝑑𝜉2

= 8𝛼2 = 8
𝛾1𝑁3

𝑘0
> 0 

(29) 

That is, the parabolic function 𝜆𝑖(𝜉) faces upwards.  If the discriminant is negative, i.e. 𝛥 = 4𝛼12 − 16𝛼2(1 −
2𝛼2) < 0, the parabolic function 𝜆𝑖(𝜉)  does not have any roots.  If the discriminant is positive there are two roots 
and if it is equal to zero then there is one root.  The three cases are developed as follows. 

Case 1. Negative Discriminant 𝛥 = 4𝛼12 − 16𝛼2(1 − 2𝛼2) < 0 

In this case, the function 𝜆𝑖(𝜉) has no roots and 𝜆𝑖(𝜉) > 0,∀𝜉 ∈ [−1,1]. Therefore the constraint shown in 
Equation (25) must hold for all possible choices of k and N.  Pairs of values of α 1 and α2 that yield a negative 
determinant are sufficient to ensure that there is no single dominant harmonic in the quasi-static response.  
Specifically, the inequality in Equation (30) is a sufficient constraint. 

 
𝛼12

1
2

+
(𝛼2 −

1
4)2

1
16

< 1 
(30) 

Since 𝜆𝑖(𝜉) > 0,∀𝜉 ∈ [−1,1] and given the constraint that α2 > 0 (from Equation (15)), the low frequency 
domination constraint is derived from  Equation (26) as Equation (31).   

 𝛼1 < 0 

 

(31) 

Case 2. Positive Discriminant 𝛥 = 4𝛼12 − 16𝛼2(1 − 2𝛼2) > 0 

In this case the function 𝜆𝑖(𝜉) has two roots given by Equation (32) where 𝜉2 > 𝜉1 since 𝛼1 < 0 and 𝛼2 > 0. 

 
𝜉1 = −

𝛼1 + √∆
4𝛼2

 

𝜉2 = −
𝛼1 − √∆

4𝛼2
 

 

(32) 

 

The function 𝜆𝑖(𝜉) for this case is shown in Figure 4 as an upward facing parabola.  If no single harmonic is to 
dominate the tire shape, then according to Equation (27) there must be no roots within the domain of 𝜉.  Therefore, 
the entire domain of 𝜉 ∈ (−1,1) must fall into one of three regions, as shown in Figure 4.   
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Figure 4. The function 𝜆𝑖(𝜉) with discriminant 𝛥 > 0 

 

In the first region, the entire domain of 𝜉 ∈ (−1,1) must be less than 𝜉1 so that the inequality given in Equation (33) 
must hold.   

 1 < 𝜉1 < 𝜉2 (33) 

It follows from Equation (32) that the inequality expressed as Equation (34) must also be true. 

 𝛼1 + 4𝛼2 < −√∆< 0  

(34) 

 

However, the inequality in Equation (34) contradicts the physical constraints expressed by Equation (15).  Therefore 
Region 1 is not admissible. 

In the second region, the entire range of 𝜆𝑖(𝜉) must be negative so that the inequality given in Equation (35) 
must always hold.  

 𝜆𝑘(−1) < 0 (35) 

 

It follows from Equation (26) that this inequality is equivalent to Equation (36). 

 2α1 + 2α2 + 1 < 0 (36) 

 

The inequality in (36) contradicts the physical constraint expressed in (15).  Therefore Region 2 is not admissible. 

Finally, in the third region, the entire range of 𝜆𝑖(𝜉) is monotonically increasing, so that the inequality given in 
Equation (33) must hold.   

 0 < 𝜆𝑘(−1) < 𝜆𝑘(1) (37) 

 

This inequality contradicts the low frequency domination constraint and therefore Region 3 is not valid.  In 
summary, none of the three regions for the positive discriminant are admissible.  

Case 3. Zero Discriminant 𝛥 = 4𝛼12 − 16𝛼2(1 − 2𝛼2) = 0 

Similar arguments can be made for the zero discriminant case as those made for the positive discriminant case.  Here 
there is one root so that 𝜉1 and 𝜉2 are effectively equal and there are effectively two regions in Figure 4 to consider: 
Region 1 and Region 3.  The conclusions for both of the regions are the same as in the case when the discriminant is 
positive. Therefore, the only case in which sufficient conditions to satisfy both spatial frequency constraints is when 
the discriminant is negative wherein the function 𝜆𝑖(𝜉) has no roots and 𝜆𝑖(𝜉) > 0,∀𝜉 ∈ [−1,1].  
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Summary of Admissibility Constraints 

All the active constraints on the shape coefficients 𝛼1 and 𝛼2 obtained under the three physical constraints and the 
two conditions derived from the spatial frequency constraints are expressed in Equation (38). 

 

�

4𝛼12 − 16𝛼2(1 − 2𝛼2) < 0
𝛼1 < 0

𝛼1 + 4𝛼2 > 0
� 

(38) 

Note that two of the five constraints are redundant.  The resultant admissible region for 𝛼1 and 𝛼2 is plotted as 
Figure 5, with the white area denoting the admissible region. 

 
Figure 5. The admissible region for 𝛼1 and 𝛼2 

 

EXPERIMENTAL VALIDATION 

The experimental data used to validate this work is provided by Professor Schalk Els of the University of Pretoria, 
South Africa.  The tire used is a Continental Conti-Trac AT 238/85 R16.  Two quasi-static tests (a flat plate test and a 
cleat test) are performed that produce resultant spindle force, F, with respect to the tire deflection, e.  The side length 
of the square tube is 19 mm.  The stiffness, k0, and shape parameters, α1 and α2, were tuned to approximate 
experimental results shown in Figure 5 and Figure 6.  It must be noted that a more formal process to identify the best 
parameterization of the model is under development.  In both figures the experimental results are shown as a solid 
line while the simulation results are shown as a dashed line.  It is clear from Figure 5 that the nonlinear stiffening 
characteristic of the tire is captured by the constraint mode tire model as indicated by the increased slope with 
increasing deflection.  The difference between the simulated and experimental forces is less than 4%. 
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Figure 6. Flat-plate experimental and simulated force, F, with respect to the deflection, e 

The cleat test results shown in Figure 6 show reasonable agreement throughout the range of deflection.  It is clear 
that a discontinuity in stiffness occurs when the deflection exceeds approximately 5cm, dividing the results into two 
regions.  In the first region (displacements up to 5cm) the tire is suspended by the cleat and the contact area related 
to force generation is constrained to the cleat surface only; the resulting stiffness is relatively small.  This is shown 
conceptually in the upper inset picture in Figure 6.  Here the difference between the experimental and simulated 
force data is less than 7%.  In the second region the tire tread touches the surface below the cleat and the total 
contact area increases, as shown in the lower inset picture.  This discontinuity in stiffness is captured by the 
constraint mode tire model.  Note that although a simple linear model is used to predict the radial deflection of the 
tire surface, both of the nonlinear effects shown in Figure 5 and Figure 6 are captured. 
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Figure 6. Cleat experimental and simulated force, F, with respect to the deflection, e 

 

DISCUSSION 
The two main contributions of this work are the description of the linear planar tire model in terms of a single 
stiffness parameter and two shape parameters and the development of an admissible region for the shape parameters.  
It is clear that the particular choice of tire parameters used in this work produces reasonable force predictions and 
accounts for nonlinear changes in stiffness.  A parameterization process that more exactly replicates the experimental 
results for a particular tire is outside the scope of this work, but is the focus of future studies. 

It is envisioned that the constraint mode tire model developed in this work can serve as a terrain morphological 
filter.  That is, this constraint mode tire model can be used to pre-filter the terrain surface once, providing the 
required bridging and enveloping properties of the tire.  A simpler tire model (perhaps a simple linear point-
follower) could be used in the iterative design process to provide fast yet reliable spindle force prediction for vehicle 
dynamic simulation and reliability evaluation.  Specifically, an effective road profile could be estimated given an 
actual terrain profile by simulating the constraint mode tire model traveling over an actual terrain profile given a 
constant spindle load.  It is hoped that a small sacrifice in accuracy will results in an order of magnitude increase in 
computational speed.  Ultimately, the tire constraint model will be further improved so that it can be applied to both 
deterministic terrain profiles and stochastic terrain profiles. 

CONCLUSIONS  
The first contribution of this work is a computationally efficient, planar, quasi-static, constraint mode tire model that 
captures the deformed tire shape.  The required model parameters are reduced to two non-dimensional shape 
parameters and an overall stiffness factor.  The second contribution is an admissible domain for the shape parameters 
that are sufficient to produce a realistic tire deflection.  Although the focus of the work is to develop a simple linear 
model to predict the tire shape, simulated spindle loads are compared to experimental loads for a flat plate test and a 
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cleat test.  The results of the experimental comparison demonstrate that nonlinear stiffness effects are adequately 
captured by this simple linear tire model.  A computationally efficient, planar tire model that accurately predicts the 
lower-frequency, but not necessarily low amplitude, tire shape has been developed.  This model strikes a balance 
between heuristic tire models (such as a linear point-follower) that lack the fidelity to make accurate chassis load 
predictions and computationally intensive models that cannot provide timely predictions.  It is hoped that this tire 
model is used as an integral part of the computationally efficient and accurate vehicle dynamic simulations that are 
critical throughout the iterative design process.   
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